Acta Neuropharmacologica ›› 2016, Vol. 6 ›› Issue (6): 45-54.DOI: 10.3969/j.issn.2095-1396.2016.06. 005
Previous Articles Next Articles
XU Wei-zhe,LI Xiao-rong,XIONG Jie,XU Ping-xiang,XUE Ming
Online:
2016-12-26
Published:
2017-01-03
Contact:
国家自然科学基金项目(No.81573683),北京市自然科学基金暨市教委重点项目(No.KZ201110025024)
About author:
徐唯哲,男,硕士;研究方向:药代动力学;Tel:+86-010-83950162,E-mail:xwzccmu@126.com
Supported by:
国家自然科学基金项目(No.81573683),北京市自然科学基金暨市教委重点项目(No.KZ201110025024)
XU Wei-zhe,LI Xiao-rong,XIONG Jie,XU Ping-xiang,XUE Ming. An Overview of the Transporters for the Neurodrugs Based on the Blood-Brain Barrier[J]. Acta Neuropharmacologica, 2016, 6(6): 45-54.
Add to citation manager EndNote|Ris|BibTeX
URL: http://actanp.hebeinu.edu.cn/EN/10.3969/j.issn.2095-1396.2016.06. 005
[1] P Borst, R Oude Elferink. Mammalian ABC transporters in health and disease [J]. Ann Rev Biochem, 2003, 71(1):537-592.[2] Matthias A Hediger, Michael F Romero, Peng Ji-bin, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins [J]. Pflügers Archiv Eur J Physiol, 2003, 447(5):465-8.[3] Coen C Paulusma, Piter J Bosma, Guido J R Zaman, et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene [J]. Science, 1996, 271:1126-1128.[4] Jonathon Burman, Cindy H Tran, Charles Glatt, et al. The effect of rare human sequence variants on the function of vesicular monoamine transporter [J]. Pharmacogenetics, 2004, 14:587-594.[5] Elaine M Leslie, Roger G Deeley, Susan P C Cole. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2 and BCRP in tissue defense [J]. Toxicol Appl Pharmacol, 2005, 204(3): 216-237.[6] Sun Hai-ying, Dai Hai-qing, Naveed Shaik, et al. Drug efflux transporters in the CNS [J]. Adv Drug Deliv Rev, 2003, 55(1): 83-105.[7] David J Begley, Milton W Brightman. Structural and functional aspects of the blood–brain barrier [J]. Prog Drug Res, 2003, 61:39-78.[8] James F List, Vincent Woo, Enrique Morales, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes [J]. Diabetes Care, 2009, 32(4): 650-657.[9] 张健, 刘克辛. 药物转运体介导的小肠吸收、肾脏排泄与药物相互作用的关系 [J]. 药学学报, 2010(9):1089-1094. [10] Anupa K Patel, Vivian Fonseca. Turning glucosuria into a therapy: Efficacy and safety with SGLT2 inhibitors [J]. Curr Diabetes Rep, 2010, 10(2):101-107.[11] Hitesh Vaidya, Ramesh K Goyal. Exploring newer target sodium glucose transporter 2 for the treatment of diabetes mellitus [J]. Mini Rev Med Chem, 2010, 10(10):905-913.[12] Edward Chao, Robert R Henry. SGLT2 inhibition-a novel strategy for diabetes treatment [J]. Nature Rev Drug Discov, 2010, 9(7):551-559. [13] Robinson Sabino Silva, Rosana Mori, Aline David, et al. The Na+/glucose cotransporters: from genes to therapy [J]. Brazil J Med Biol Res, 2010, 43(11):1019-1026.[14] Wei Meng, Bruce A Ellsworth, Alexandra A Nirschl, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes [J]. J Neurosci, 2008, 51(5):14271–14286.[15] Maria Florencia Albertoni Borghese. Monica Majowicz Albertoni. Inhibitors of sodium/glucose cotransport [J]. Drugs Future, 2009, 34(4):297-305.[16] 何聿娴, 刘晓东, 王新廷, 等. 钠依赖性葡萄糖转运体介导红景天苷在大鼠肠中吸收[J]. Chin J Nat Med, 2009(6): 444-448.[17] I Stuart Wood, Paul Trayhurn. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins [J]. Brit J Nutr, 2003, 89(1):3-9.[18] Hans-Georg Joost, Bernard Thorens. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members [J]. Mol Membr Biol, 2001, 18(4):247-256.[19] Hans-Georg Joost, Graeme I Bell, James D Best, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators [J]. Am J Endocrinol Metab, 2002, 282(4):E974-6.[20] Aramati B M Reddy, Satish K Srivastava, Kota V Ramana. Aldose reductase inhibition prevents lipopolysaccharide-induced glucose uptake and glucose transporter 3 expression in RAW264.7 macrophages [J]. Int J Biochem Cell Biol, 2010, 42(6):1039-1045.[21] Ala Jo, Park Jongmin, Seung Bum Park. Exploiting the mechanism of cellular glucose uptake to develop an image-based high-throughput screening system in living cells [J]. Chem Commun, 2013, 49(45):5138-5140.[22] Hyang Yeon Lee, Jae Jeong Lee, Jongmin Park, et al. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells [J]. Chem, 2011, 17(1):143-150.[23] Roger G O’Neil, Ling Wu, Nizar Mullani. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells [J]. Mol Imag Biol, 2005, 7(7):388-92.[24] Oran Kwon, Peter Eck, Chen Sheng-lin, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids [J]. Faseb, 2007, 21(2):366-377.[25] Nakata M, Nagasaka S, Kusaka I, et al. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control [J]. Diabetologia, 2006, 49(8):1881-1892.[26] Takaguri A, Satoh K M, Tokumitsu Y, et al. Effects of atorvastatin and pravastatin on signal transduction related to glucose uptake in 3T3L1 adipocytes [J]. J Pharmacol Sci, 2008, 107(1):80-89.[27] Abraham J Al-Alahmad. Comparative study on glucose transporters expression and activity between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells [J]. Am J Physiol Cell Physiol, 2017, doi: 10.1152/ajpcell.00116.2017.[28] Susanna Bodoy, Lorena Martin, Antonio Zorzano, et al. Identification of LAT4, a novel amino acid transporter with system L activity [J]. J Biol Chem, 2005, 280:12002-12011.[29] Andreas Reichel, N Joan Abbott, David J Begley. Evaluation of the RBE4 cell line to explore carrier-mediated drug delivery to the CNS via the L-system amino acid transporter at the blood-brain barrier [J]. J Drug Target, 2002, 10(4):277-283.[30] Segawa H, Fukasawa Y, Miyamoto K, et al. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity [J]. J Biol Chem, 1999, 274(28):19745-19751.[31] Jarkko Rautio, Krista Laine, Mikko Gynther, et al. Prodrug approaches for CNS delivery [J]. Aaps J, 2008, 10(1):92-102.[32] Hiroshi Uchino, Yoshikatsu Kanai, Do Kyung Kim, et al. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition [J]. Mol Pharmacol, 2002, 61(4):729-737.[33] David Dickens, Steven Douglas Webb, Svetlana Antonyuk , et al. Transport of gabapentin by LAT1 (SLC7A5)[J]. Biochem Pharmacol, 2013, 85(11):1672-1683.[34] David A Groneberg, Frank Doring, Paul Eynott, et al. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1 [J]. Int J Comput Math, 2001, 281(3): 697-704.[35] Guillaume Dalmasso, Hang Thi Thu Nguyen, Laetitia Charrier-Hisamuddin, et al. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma-D-Glu-meso-DAP in intestinal epithelial cells [J]. Am J Physiol-Gastro, 2010, 299(3): G687.[36] Guillaume Dalmasso, Hang Thi Thu Nguyen, Sarah A Ingersoll, et al. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice [J]. J Gastroenterol, 2011, 141(4):1334-1345.[37] Tai Wan-yi, Chen Zhi-jin, Cheng Kun. Expression profile and functional activity of peptide transporters in prostate cancer cells [J]. Mol Pharm, 2012, 10(2):477-487.[38] Matthias Brandsch. Drug transport via the intestinal peptide transporter PepT1 [J]. Curr Opinion Pharmacol, 2013, 13(6):881-887.[39] Constanze Hilgendorf, Gustav Ahlin, Annick Seithel, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines [J]. Drug Metab Dispo, 2007, 35(35):1333-40.[40] Andrew Bahn, Dirk Prawitt, Diana Buttler, et al. Genomic structure and in vivo expression of the human organic anion transporter 1 (hoat1) gene [J]. Biochem Biophy Res Commun, 2000, 275(2):623-30.[41] Eve-Irene Lepist, Zhang Xue-xiang, Hao Jia, et al. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicista t[J]. Eur J Immunol, 2014, 36(11):2928-2938.[42] Shen Hong, Liu Tong-tong, Bridget L Morse, et al. Characterization of organic anion transporter 2 (slc22a7): a highly efficient transporter for creatinine and species-dependent renal tubular expression [J]. Drug Metab Dispos, 2015, 37(6):603-613.[43] Gerhard Burckhardt. Drug transport by organic anion transporters [J]. Pharmacol Thera, 2012, 136(1):106-30.[44] Zhang Lei, Mark J Dresser, Andrew T Gray, et al. Cloning and functional expression of a human liver organic cation transporter [J]. Brain Stimul, 2015, 8(2):913-921.[45] Johan W Jonker, Alfred H Schinkel. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3) [J]. J Pharmacol Exp Thera, 2004, 308(1):2-9.[46] Wang L, Athina Giannoudis, Lane S, et al. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia [J]. Clin Pharmacol Thera, 2008, 83(2):258-264.[47] Hermann Koepsell, Hitoshi Endou. The SLC22 drug transporter family [J]. EurJ Physiol, 2004, 447(5):666-76.[48] David L Bourdet, John B Pritchard, Dhiren R Thakker. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 [J]. J Pharmacol Exp Thera, 2006, 315(3):1288-97.[49] Supratim Choudhuri, Curtis D Klaassen. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters [J]. Int J Toxicol, 2006, 25(4):231-259.[50] Robert Ernst, Petra Kueppers, Jan Stindt, et al. Multidrug efflux pumps: Substrate selection in ATP-binding cassette multidrug efflux pumps-first come, first served [J]. Febs J, 2010, 277: 540-549.[51] Manthena V S Varma, Yasvanth Ashokraj, Chinmoy S Dey. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement [J]. J Ital Pharmacol Soc, 2003, 48(4):347-359.[52] Elaine M Leslie, Roger Deeley, Susan Cole. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2 and BCRP (ABCG2) in tissue defense [J]. Toxicol Appl Pharmacol, 2005, 204: 216-237.[53] Kyoung-Ah Kim, Pil-Whan Park, Ji-Young Park. Effect of ABCB1 ( MDR1 ) haplotypes derived from G2677T/C3435T on the pharmacokinetics of amlodipine in healthy subjects [J]. Br J Clin Pharmacol, 2007, 63(1):53-58.[54] Christiane Pauli-Magnus, Deanna Kroetz. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1) [J]. Pharm Res, 2004, 21(6):904-913.[55] Teodori E, Dei S, Martelli C, et al. The functions and structure of ABC transporters: implications for the design of new inhibitors of P-gp and MRP1 to control multidrug resistance (MDR) [J]. Curr Drug Targets, 2006, 15(2):167-176.[56] Marilyn E Morris, Vivian Rodriguez-Cruz, Melanie A Felmlee. SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers [J]. AAPS J, 2017, doi: 10.1208/s12248-017-0110-8.[57] Clemens Braun, Atsushi Sakamoto, Holger Fuchs, et al. Quantification of transporter and receptor proteins in dog brain capillaries and choroid plexus: relevance for the distribution in brain and CSF of selected BCRP and P-gp substrates [J]. Mol Pharm, 2017, doi: 10.1021/acs.molpharmaceut. 7b00449.[58] Mahringer A, Fricker G. ABC transporters at the blood-brain barrier [J]. Expert Opin Drug Metab Toxicol, 2016, 12(5):499-508. [59] Nathalie Strazielle, Jean-Francois Ghersi-Egea. Efflux transporters in blood-brain interfaces of the developing brain [J]. Front Neurosci, 2015, 9:21-29. [60] Cole S P, Bhardwaj G, Gerlach J H, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line [J]. Science, 1992, 258(5088):1650-1654.[61] Andrew J Slot, Steven V Molinski, Susan P C Cole S. Mammalian multidrug-resistance proteins (MRPs) [J]. Essays Biochem, 2011, 50(1):179-207.[62] Shannon Dallas, David S Miller, Reina Bendayan. Multidrug resistance-associated proteins: expression and function in the central nervous system [J]. Pharmacol Rev, 2006, 58(2):140-161.[63] Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier [J]. Rev Neurosci, 2010, 21(1):29-53.[64] S M He, Li R, Jagat R Kanwar, et al. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1) [J]. Curr Med Chem, 2011, 18(3):439-481.[65] Douglas D Ross, Takeo Nakanishi. Impact of breast cancer resistance protein on cancer treatment outcomes [J]. Meth Mol Biol, 2010, 596:251-290.[67] Kenji Oda, Tomohiro Nishimura, Kei Higuchi, et al. Estrogen receptor α induction by mitoxantrone increases Abcg2 expression in placental trophoblast cells [J]. J Pharm Sci, 2013, 102(9): 3364-3372.[68] Marilyn L Clarke, John R Mackey, Stephen A Baldwin, et al. The role of membrane transporters in cellular resistance to anticancer nucleoside drugs [J]. Cancer Treat Res, 2002, 112:27-47.[69] Gerd A Kullak-Ublick, Bruno Stieger, Peter J Meier. Enterohepatic bile salt transporters in normal physiology and liver disease [J]. Gastroenterol, 2004, 126(1): 322-342.[70] Mukta Agrawal, Ajazuddin, Dula K Tripathi, et al, Recent advancements in liposomes targeting strategies to cross blood-brain barrier for the treatment of Alzheimer's disease [J]. J Control Release, 2017, 260: 61-77.[71] Mitchell P McInerney, Jennifer L Short, Joseph A Nicolazzo. Neurovascular alterations in Alzheimer's disease: transporter expression profiles and cns drug access [J]. AAPS J, 2017, 19(4):940-956.[72] Satoki Imai, Ryota Kikuchi, Hiroyuki Kusuhara, et al. Analysis of DNA methylation and histone modification profiles of liver-specific transporters [J]. Mol Pharmacol, 2009, 75(3): 568-576.[73]Ciarimboli G. Organic cation transporters [J]. Xenbiotica, 2008, 38:936-971.[74] Benjamin J Andreone, Brian Wai Chow, Aleksandra Tata, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis [J]. Neuron, 2017, 94(3):581-594.[75] William M Pardridge. Blood-brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery [J]. Expert Opin Ther Targets, 2015, 19(8):1059-1072. [76] Atsushi Ose, Mototsugu Ito, Hiroyuki Kusuhara, et al. Limited brain distribution of Ro 64-0802 a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (OAT3/SLC22A8) and multidrug resistance-associated protein 4 (MRP4/ABCC4) [J]. Drug Metab Dispos, 2009, 37:315-321.[77] Akanuma S I, Shimada H, Kubo Y, et al. Involvement of carrier-mediated transport at the blood-cerebrospinal fluid barrier in spermine clearance from rat brain [J]. Biol Pharm Bull, 2017, 40(9):1599-1603. [78] Joseph W Polli, Katie L Olson, John P Chism, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the CNS penetration of the tyrosine kinase inhibitor lapatinib [J]. Drug Metab Dispos, 2009, 37:439-442.[79] Ryota Kikuchi, Hiroyuki Kusuhara, Takaaki Abe, et al. Involvement of multiple transporters in the efflux of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors across the blood-brain barrier [J]. J Pharmacol ExpTher, 2004, 311:1147-1153. [80] Agrawal M, Ajazuddin, Tripathi D K, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier for the treatment of Alzheimer's disease [J]. J Control Release, 2017, 260:61-77.[81] Sotnikova T D, Beaulieu J M, Gainetdinov R R, et al. Molecular biology, pharmacology and functional role of the plasma membrane dopamine transporter [J]. CNS Neurol Disord Drug Targets, 2006, 5:45-56.[82] 张海威,张力. 血脑脊液屏障上P- 糖蛋白的研究进展[J].神经药理学报, 2016, 6(2):53-64.[83] Anika M S Hartz, David S Miller, Bjorn Bauer. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid beta in a mouse model of Alzheimer’s disease [J]. Mol Pharmacol, 2010, 77(5):715-723.[84] I Alexandru Bobulescu, Francesca Di Sole, Orson W Moe. Na+/H+ exchangers: physiology and link to hypertension and organ ischemia [J]. Mol Cell Biol Physiol, 2005, 14:485-494.[85] Gonzalo E Torres, Susan G Amara. Glutamate and monoamine transporters: New visions of form and function [J]. Curr Opin Neurobiol, 2007, 17(3):304-312.[86] Srividya Kidambi, Shailendra B Patel. Cholesterol and non-cholesterol sterol transporters: ABCG5, ABCG8 and NPC1L1: A review [J]. Xenobiotica, 2008, 38:1119-1139.[87] Brzica H, Abdullahi W, Ibbotson K, et al. Role of transporters in central nervous system drug delivery and blood-brain barrier protection: relevance to treatment of stroke [J]. J Cent Nerv Syst Dis, 2017, 9:117-129. [88] Naomi Mizuno, Takuro Niwa, Yoshihisa Yotsumoto, et al. Impact of drug transporter studies on drug discovery and development [J]. Pharmacol Rev, 2003, 55(3):425-461.[89]Marlyn Laksitorini, Vivitri D Prasasty, Paul K Kiptoo, et al. Pathway and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers [J]. Ther Deliv, 2014, 5(10):1143-1163. [90] Reiner F Haseloff, Sophie Dithmer, Lars Winkler, et al. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects [J]. Semin Cell Dev Biol, 2015, 38:16-25.[91] Abu J M Sadeque, Christoph Wandel, Hauibing He. Increased drug delivery to the brain by P-glycoprotein inhibition [J]. Clin Pharmacol Ther, 2000, 68:231-237.[92] Borst P, Elferink R O. Mammalian ABC transporters in health and disease [J]. Annu Rev Biochem, 2002, 71:537-592.[93] Gergely Szakacs, Jill Paterson, Joseph Ludwig, et al. Targeting multidrug resistance in cancer [J]. Nature Rev, 2006, 5: 219-234. [94] Nicola Antonio Colabufo, Francesco Berardi, Mariangela Cantore. Perspectives of P-glycoprotein modulating agents in oncology and neurodegenerative diseases: pharmaceutical, biological and diagnostic potentials [J]. J Med Chem, 2010, 53(5):1883-1897. [95] Li Xue, Hu Jin-Ping, Wang Bao-Lian. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: herb drug interactions mediated via P-gp [J]. Toxicol Appl Pharm, 2014, 275(2): 163-175.[96] Nandhitha Subramanian, Karmen Condic-Jurkic, Megan L O'Mara. Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein [J]. Neurochem Int, 2016, 98(10):146-152.[97] Xia Yuan-zheng, Ni Kai, Guo Chao, et al. Alopecurone B reverses doxorubicin-resistant human osteosarcoma cell line by inhibiting P-glycoprotein and NF-κB signaling [J]. Phytomedicine, 2015, 22(3):344-351.[98] Yang Xiao-fan, Ding Yu-feng, Xiao Miao, et al. Anti-tumor compound RY10-4 suppresses multidrug resistance in MCF-7/ADR cells by inhibiting PI3K/Akt/NF-κB signaling[J]. Chem Biol Interact, 2017, 278:22-31.[99] Toyoda Y, Hagiya Y, Adachi T, et al. MRP class of human ATP binding cassette (ABC) transporters: Historical background and new research directions [J]. Xenobiotica, 2008, 38(7-8): 833-862. |
[1] | YANG Jing,YUAN Wen-ying. Toxoplasma Infection on Nerve Tissue Damage and Its Mechanism through the Blood-Brain Barrier [J]. Acta Neuropharmacologica, 2019, 9(5): 40-43. |
[2] | CHEN Jian,HOU Hong-wei,LIU Yong,WANG An,HU Qing-yuan. Advances in Research Methods of Blood—Brain Barrier Transporters [J]. Acta Neuropharmacologica, 2016, 6(3): 44-55. |
[3] | JIANG Tao,YANG Bao-xue. Tissue Localization and Physiological Functions of Urea Transporters [J]. Acta Neuropharmacologica, 2015, 5(5): 40-48. |
[4] | WANG Hao, DU Guan-tao, LIU Guang-jun, HONG Hao. Research Progress on RAGE/LRP1 Transporters At the Blood-Brain Barrier and the Neurovascular Unit in Alzheimer’s Disease [J]. Acta Neuropharmacologica, 2015, 5(2): 38-45. |
[5] | CHENG Fang, HU Meng, DU Guan-tao, LIU Guang-jun, HONG Hao. Research Advances on Mechanism of Cognitive Impairment in Type 2 Diabetes Mellitus [J]. Acta Neuropharmacologica, 2013, 3(3): 27-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||